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Aldo: Schutzenberger Theorem and Green Relations
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1. Introduction

In the combinatorial theory of free monoids the
sequence of words of Fibonacci plays a very impor-
tant role since the words of Fibonacci have remark-
able combinatorial properties some of which have been
stressed by Knuth [4] in relation with problems of
‘string matching’ and, more recently, by Duval [3] in
the study of ‘periodicity’ of the words.

In this paper by making use of a result of Berstel
(cf. Proposition 1) which states that for n = 3 the
Fibonacci words f,, have a palindrome left-factor of
length |f,| — 2, we shall prove that (cf. Proposition 2)
for all n >4, f,, is the product of two, uniquely deter-
mined, palindrome words of lengths F(n — 1) — 2 and
F(n — 2) + 2, where F(n) = |f, | is the n-th term of the
Fibonacci numerical sequence.

These two properties of the Fibonacci words are of
great interest since we can show (cf. Proposition 3)
that for n > 4, the Fibonacci sequence f,, is the unique
sequence of words satisfying the previous properties
and the additional requirements that the words con-
tain at least two different letters and that they always
begin with a same letter (the letter ‘b’ in our case).

any w =a; - a,, a; € A, 1 <i<n, the reversed word
W is defined as W = a,, - a,. Moreover T = 1. A word
w is called palindrome if w = W.

In the following we consider an alphabet A whose
cardinality |Alis >2. The sequence {f,},n>1, of
words of Fibonacci is defined inductively as:

f1=a, f2=b, fn+l =fnfn—1:

a,bEA, a#b, n=2.

The length If, | of f,, is the n-th term F(n) of the nu-
merical sequence of Fibonacci since If; | = If,] =1

and If.q | = If,| + If,_,| forall n > 2.

Proposition 1. For all n = 3 one has that f, = a,d,,,
where ¢, is palindrome and d,, = ab if n is even and
d,, = baif nis odd.

Proof. The proof is by induction on the integer n. The
result is trivial for n = 3 and n = 4. Let us then suppose
that n > 4. One has that:

fo =fa_i1fn_2 =fh_2fn_3fh 2

=Qn_p dn—2o¢n—3dn—?)an—zdn—Z .
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13 August 1981 Fibonacci word: W42 = Wpe1 + Wp
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b

ba

ba b

bab ba

babba bab
babbabab babba

or palindrome ba
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1. Introduction

In the combinatorial theory of free monoids the
sequence of words of Fibonacci plays a very impor-
tant role since the words of Fibonacci have remark-
able combinatorial properties some of which have been
stressed by Knuth [4] in relation with problems of
‘string matching’ and, more recently, by Duval [3] in
the study of ‘periodicity” of the words.

In this paper by making use of a result of Berstel
(cf. Proposition 1) which states that for n = 3 the
Fibonacci words f,, have a palindrome left-factor of
length |f,| — 2, we shall prove that (cf. Proposition 2)
for all n > 4, f,, is the product of two, uniquely deter-
mined, palindrome words of lengths F(n — 1) — 2 and
F(n — 2) + 2, where F(n) = |f, | is the n-th term of the
Fibonacci numerical sequence.

These two properties of the Fibonacci words are of
great interest since we can show (cf. Proposition 3)
that for n > 4, the Fibonacci sequence £, is the unique
sequence of words satisfying the previous properties
and the additional requirements that the words con-
tain at least two different letters and that they always
begin with a same letter (the letter ‘b’ in our case).

2. The Fibonacci words — A combinatorial property

Let A be a finite, nonempty set, or alphabet and A"
the free monoid generated by A. The elements of A
are called letters and those of A* words. The identity
element of A* is denoted by 1. Further A* = A"\ {1}

_is the free semigroup generated by A.
For any word w € A*, lw/| denotes its length. For
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any w = a, " ap, a; € A, 1 <i=<n, the reversed word
W is defined as W = a,, - a,. Moreover T = 1. A word
w is called palindrome if w = W.

In the following we consider an alphabet A whose
cardinality |Alis>2. The sequence {f,},n>1, of
words of Fibonacci is defined inductively as:

f1 =a, f, =b, faer = fafay,
a,bEA, a#b, n=2.

The length If, | of f, is the n-th term F(n) of the nu-
merical sequence of Fibonacci since If; | = [f,] =1

and Ifp4q | = Ifyl + If,_; | foralln>2.

Proposition 1. For all n = 3 one has that f, = o, d,,,
where «;, is palindrome and d,, = ab if n is even and
d,, =baif nis odd.

Proof. The proof is by induction on the integer n. The
result is trivial for n =3 and n = 4. Let us then suppose
that n > 4. One has that:

fn = fn—lfn—2 = n—zfn—3fn—2
= an—‘zdn—Zan—Jdn—:!an—‘Zdn—Z-

Since the words ¢, _, and «,_3 are palindrome by the
hypothesis of the induction and, moreover, for all
n, d, =d4 it follows that the word

Qn = Q2 dn—20‘n—3dn—3an—2 >
is palindrome. Thus being d,, = d,, _, the result follows.

Proposition 2. For all n >4, f,, is the product u,v, of
two uniquely determined palindrome words of A*
whose lengths are lu,|=F(n — 1) —2and lv,| =

F(n —2)+2.
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Proof. By Proposition 1 one can write for alln > 5
fn=faifa2 =01 dy_j0n_pd, 5.

Since d,,_; = En_g one has that f,, is the product of
the two palindrome words u, = &, and v,, =
dy_1@n_2d,_, whose lengths are respectively |u,|=
lan_yl = Ify_ 1| —=2=Fn —1)—2, lvyl =2+
log_2dn_pl =2+ If,_,1 =2+ F(n — 2).

We shall now prove that the Fibonacci words f,,
are primitive (i.e. for eachn > 1, f,, # wp with w €
A* and p = 2). This will imply that the previous fac-
torization f,, = u,v,, in two palindrome words is
unique. Obviously f, and f, are primitive. Let us then
suppose n =3 and f;, = wP withp>2and w € A™*.
By Proposition 1 we can write f,, = wP = o, d,,. From
the definition of Fibonacci words it follows that
Wl > 1so that w=w; w, with w, =d, and

n = WP lwy = (wywy)Plw, = (W1 Wo)P~ .

This implies that W, = w,, i.e. d, =d, which is
absurd. Thus Fibonacci words are primitive.

The result follows by the fact that if a primitive
word is the product of two palindrome words of A*
then this factorization is unique (cf. [2]).

The next proposition shows that the properties of
the Fibonacci words expressed by Proposition 1 and 2
and the fact that these words for n = 3, contain two
different letters and that for n > 1 the first letter is
always ‘b’ characterize them completely. More pre-
cisely it holds the following:

Proposition 3. Let {w,},n > 1, be a sequence of
words of A* each of which contains at least two dif-
ferent letters of the alphabet A (i.e. alph(w,) = 2).
Let us moreover suppose that for alln =5

Wn = @nBn = YnCn,

with ¢, € A*, =8y, By =En) Yn =¥n and la,| =

F(n —1) — 2, 1B, =F(n — 2) + 2, ly,l=F(n) — 2.
If the words w,, begin always with a same letter (‘b’
in our case) then w,, = f,, (n = 5).

Proof. The proof is by induction on the integer n. Let
us first show that the previous proposition holds for
n =5 and n = 6. From now on for simplicity we shall
drop in the words wy,, oy, By, Yn, ¢y the subscript n.
Ifn=5F(5)=5,lal=1,I181=4, |yl =3 and
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Icl=2. Thus @ =b. The equation w=b, 3 =~c, =0,
v =% has the only solution:

¥ = bab, B = abba, c=ba,

if one wants that w contains two letters at least.
Hence w = fs.

Ifn=6,F(6)=8, lal=3, 18l =5, lyl=6 and
Icl=2. In this case one easily verifies that the only
solution of the equation: w = o8 = yc, where a = @,
B=B,vy=7%, alph(w) = 2 is given by:

a = bab, B =babab, v = (bab)?, c =ab,

so that w = f§.

Let us now suppose n = 7 and consider the equa-
tion:
w=af = 1c, a=a, B=8, T=%,, (1)
with lcl=2, lal=F(n —1) — 2, I8l =F(n —2) + 2
and alph(w) > 2. Let us write w as w = w'w”, with
Iw'l=F(n — 1) and |w"l =F(n — 2). We shall prove
that w'=f,_; and w" = f,_,.

Since n > 7 it follows |8l = 7 so that being Ic| =
2 one has: f=C8c withd =8 and 151 = F(n —2) —
2 = 3. Thus from (1) we can write:

w=acfdc = yc, 2)
and
w'=ac, w" =8c.

Hence w' has a palindrome left-factor a whose length
lal =Iw'l — 2. Moreover from (2) one has:

v =acs = sca. 3)

Since F(n) > 2F(n — 2) it follows that |yl > 2181 so
that from (3) one has y = §€§ with € =€ and then

w'=at = §e.

The word w' is then the product of the two palin-
drome words & and € of lengths 15| = F(n — 2) — 2,
lel = Iw'l — 181 =F(n — 3) + 2. Moreover alph(w') =
2. In fact, otherwise, w' =b'"™'| vy =b'"' ¢ =b2 and
w =~c =b ™! which is a contradiction. By the hypo-
thesis of the induction it follows that w'= f,_,.

Let us now prove that w” = f,_,. The word w” =
&c has the palindrome left-factor § of length 5| =
F(n — 2) — 2. Moreover the first letter of w” is the
first letter of § that is ‘b’ (cf. (3)). We can rewrite (3)
as:
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G(W n) =w"a.

From the solution of the equation xy =yz,X,y,z €
A*,in free monoids [5] one easily derives that (cf.

[2):

w'=8c=¢0, (wW")=0¢,
a =0k, k=0,
¢ =%, 0=0+#1.

Moreover one has that:

I+ 101=161+2=F(n - 2),
lal=(k+ 1D)IgI+klol=Fn —1) - 2.
It follows that:

1= —k)F(n —2)+F(n —3) -2,
[01=KkF(n —2)— F(n —3)+2,

If k= 0 one has that 10| = —F(n —3)+2 < -F(4) +
2 = —1 which is absurd. If k > 2 then {| <0 which is
also absurd. Thus the only remaining possibility is

k = 1 so that:
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I$l=F(n -3)-2,

Thus w" is the product of the two palindrome words
¢t and 0 of lengths given by (4). Finally alR_h(w') > 2.
In fact if alph(w”) = 1 then w" = §c = b | This
would imply ¢ =b?, 8 =C8c=b'". From (2), w =
ab'#'= 4b? so that ab'? =2 =4 =¥ ~2¢, Hence a=
b'e 4 =b'"" and w = b"" which is a contradiction.
By making use of the hypothesis of the induction it
follows that w" = f,,_,. Thusw=w'w"=f,_,f, »=
fioe

101 =F(n —4)+2. “)
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Aldo with flu during a MFCS Congress
in a Student Accomodation in Eastern Europe.

Since then, when we met, he always said:
“‘Grazie, per avermi salvato la vita!”

(Thanks for saving my life!)
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The n-th letter in a Fibonacci word

n Wp length(wp)

1 a 1 A st = ‘a
2 b 1 2-1=1
3=21 ba 2 2nd
4=32 bab 3 2nd
5=43 babba 5 2nd
6=54 babba bab 8 2nd
/=65 babbabab babba 13 15-13 =2
8 ... 21 15th

9.. 34 15th
10 ... 55 ¥ 15th

The 15t letter of wqg is ‘a@’.

The k" letter of w,, is computed in O(n) time (using sums and subtractions only).



