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Perpetuants: a lost treasure
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Back to 1882

Invariant Theory

Binary forms

U–invariants Perpetuants

The theorem of Stroh The potenziante

A sketch of the proof
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Perpetuant

is one of the several
concepts invented (in
1882) by J. J. Sylvester

in his investigations of
covariants for binary
forms.

It appears in one of the
first issues of the
American Journal of
Mathematics which he
had founded a few years
before.

Perpetuant is a concept
of Invariant theory, and
a name which will hardly
appear in a
mathematical paper of
the last 70 years

I learned of this word
from Gian-Carlo Rota
who pronounced it with
an enigmatic smile.
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Invariant Theory
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Algebraic invariant theory in its simplest form

treats of a group G of linear transformations on a vector space V .

The action extends to polynomial functions S[V ∗] on V , by
the formula

(g · f )(v) := f (g−1v)

A polynomial f (v) is G invariant if

(g · f )(v) := f (g−1v) = f (v), ∀g ∈ G , v ∈ V .

the invariants form a subalgebra of S[V ∗] denoted by S[V ∗]G .
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Back to 1850

In 19th century the theory was developed essentially for V the
space of homogeneous polynomials of some degree q in k–variables
and G the special linear group SL(k,C) acting on these variables
or for the direct sum of copies of such forms.
For k = 2 one then speaks of binary quantics or q–antics:

f (x , y) =
q∑

i=0
aixq−iy i a general binary quantic.

q = 2, 3, 4, 5, · · · binary quadratic, cubic, quartic, quintic, etc.
The group acting is SL(2,C) (acts on x , y).

This is a q + 1 dimensional vector space Vq

The polynomial functions over Vq are C[a0, a1, a2, . . . , aq].
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A quick course on binary forms

The invariants of a general binary quantic
C[a0, a1, a2, . . . , aq]SL(2,C) are thus special polynomials in the
variables a0, a1, . . . , aq.

The space of polynomials C[a0, a1, a2, . . . , aq] can be bigraded by
defining the weight g of ai to be i so that

g(
q∏

j=0
ahj

j ) =
q∑

j=1
j · hj .

A polynomial with terms all of the same weight is called isobaric.
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a basic problem

of 19th century invariant theory was to

1 describe a minimal set of generators for invariants
2 and possibly also a minimal set of relations.

Classically generators for SL(2,C)–invariants were computed for
q ≤ 8 (some gaps for q = 7).
Now with the help of computers a few other cases have been
analyzed for q ≤ 12.
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SL(2,C)–invariants can be computed from U-invariants
Use the formalism of divided powers

λ[h] := λh

h! =⇒ (λ + µ)[h] =
h∑

i=0
λ[h−i]µ[i].

Consider the polynomial rings · · · A(q) ⊂ A(q + 1) ⊂ · · ·

A(q) := C[a0, a1, a2, . . . , aq], q = 0, . . . , ∞

and the action on A(q) of the additive group λ ∈ C = U subgroup
of SL(2,C)

U :=
{ ∣∣∣∣∣1 λ

0 1

∣∣∣∣∣ , λ ∈ C
}

induced by the action on the variables:∣∣∣∣∣1 λ
0 1

∣∣∣∣∣
∣∣∣∣∣xy
∣∣∣∣∣ =

∣∣∣∣∣x + λy
y

∣∣∣∣∣ .
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A quick course on binary forms

We can see that the U action is (normalizing the coefficients):

λ · a0 = a0, λ · a1 = a0λ + a1, λ · a2 = a0λ[2] + a1λ + a2,

λ · a3 = a0λ[3] + a1λ[2] + a2λ + a3,

λ · a4 = a0λ[4] + a1λ[3] + a2λ[2] + a3λ + a4, . . .

. . . . . . . . .

λ · aq = a0λ[q] + a1λ[q−1] + a2λ[q−2] + · · · + aq−1λ + aq
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U–invariants

denote the ring of U–invariants of binary forms of degree q (or
polynomials) by

S(q) = C[a0, a1, a2, . . . , aq]U .

Then S(q) = ⊕S(q)k,g is bigraded, that is it decomposes into
a direct sum of components, homogeneous of degree k and
isobaric of weight g .
The ring of invariants under SL(2,C) is the subring of S(q)
direct sum of the homogeneous and isobaric components with
g = q·k

2 .
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A quick course on binary forms

That is a homogeneous invariant of a binary q–form is a U
invariant with the relation between

the degree k and the weight g

g = q · k
2 .

As example the discriminant of the cubic (q = 3):

D = 3a2
1a2

2 + 6a0a1a2a3 − 4a3
1a3 − 4a0a3

2 − a2
0a2

3

of degree 4 and weight 6 = 3·4
2 , generates the algebra of invariants

of the cubic. For q = 2 we have also the discriminant a2
1 − 2a0a2.
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Example of the cubic (new notations for ai)

The algebra of U–invariants, for the cubic, is generated by 4
elements. The discriminant D, and a0, H, T :

D = 9a2
0a2

3 − 18a0a1a2a3 + 8a0a3
2 + 6a3

1a3 − 3a2
1a2

2

a0, H = a2
1 − 2a0a2, T = a3

1 − 3a0a1a2 + 3a2
0a3

the element a0 (degree 1, weight 0), and H of degree 2 and
weight 2, T of degree 3 and weight 3.

They are related by the syzygy H3 + Da2
0 − T 2 = 0 of degree 6 and

weight 6.
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Example of the quartic

The algebra of U–invariants, for the quartic is generated by 5
elements a0, B, C , H, T .

a0, H = a2
1 − 2a0a2, T = a3

1 − 3a0a1a2 + 3a2
0a3

B = 2a0a4 − 2a1a3 + a2
2,

C = 2a3
2 − 6a1a2a3 + 9a0a2

3 + 6a2
1a4 − 12a0a2a4.

Relation 3a2
0HB − a3

0C − H3 + T 2 = 0 .

Notice that now D = −3HB + a0C .
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commutative algebra

in modern terms given a graded commutative algebra A = ⊕∞
i=0Ai

over a field F = A0, setting I = ⊕∞
i=1Ai we have that the elements

of I2 are decomposable and a minimal set of generators of A is a
set of homogeneous elements giving a basis of I/I2.

I/I2 is a graded vector space and it is finite dimensional if and only
if A is finitely generated over F .

Apply this to A = S(q)
and denote by Iq the subspace of U–invariants with no constant
term.

Then Iq/I2
q is bigraded by degree and weight and a basic problem is

to prove that it is finite dimensional and compute the dimension of
its bigraded pieces.
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commutative algebra

in modern terms given a graded commutative algebra A = ⊕∞
i=0Ai

over a field F = A0, setting I = ⊕∞
i=1Ai we have that the elements

of I2 are decomposable and a minimal set of generators of A is a
set of homogeneous elements giving a basis of I/I2.

I/I2 is a graded vector space and it is finite dimensional if and only
if A is finitely generated over F .

Apply this to A = S(q)
and denote by Iq the subspace of U–invariants with no constant
term.

Then Iq/I2
q is bigraded by degree and weight and a basic problem is

to prove that it is finite dimensional and compute the dimension of
its bigraded pieces.
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a basic problem

A lot of work by
Cayley, Sylvester, Clebsch, Gordan and others was devoted to
compute U–invariants with success for forms of degree q ≤ 6,
there are 23 generators for q = 5 the largest of degree 18.

Recent work, with the help of computers, gives further results up
to degree 12.

A crowning point of this research was Gordan’s proof that these
algebras of invariants are finitely generated, but no explicit
formulas for either the generators or even for just the weight and
degree of these generators is known for q > 12.
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Hilbert

The theory was revolutionised by Hilbert at the end of the century.
He proved the finiteness theorem of forms in any number of
variables and asked, in his 14th problem, if the finiteness theorem is
true for every group.

Negative answer by Nagata 1958.
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We can finally define:

Perpetuants
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a stable problem

From the formulas it is clear that the ring of U–invariants S(q) is
contained in the ring of U–invariants S(q + 1) and so on.

So one can define the ring of U–invariants S =
∪

q S(q) as the
subring of the polynomial ring:

C[a0, a1, a2, . . . , an, . . .], ai , i = 0, . . . , ∞

in the infinitely many variables ai , i = 0, . . . , ∞ invariant under
the limit action of the 1–parameter subgroup U.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction binary forms Perpetuants The theorem of Stroh The potenziante A sketch of the proof

a basic theorem

This 1–parameter subgroup λ · ak =
∑k

j=0 ajλ
[k−j],

has as infinitesimal generator the differential operator

D =
∞∑

i=1
ai−1

∂

∂ai
, D(ai) = ai−1, D(a0) = 0.

For each q = 0, 1, . . . , ∞ the algebra S = C[a0, a1, a2, . . . .aq]U of
U-invariants is formed by the polynomials f in the variables
a0, a1, a2, . . . , aq, satisfying Df = 0 i.e.:

∞∑
i=1

ai−1
∂

∂ai
f (a0, a1, a2, . . .) = 0, D =

∞∑
i=1

ai−1
∂

∂ai
.
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Perpetuants

It was quickly discovered that
an element of S(q), which is indecomposable in S(q), need
not remain indecomposable in S(q + 1).

In other words: the maps Iq/I2
q → Iq+1/I2

q+1 need not be
injective,
or also: a minimal set of generators for S(q) cannot be
completed to one for S(q + 1).

As an example the generator D for S(3) is decomposable in S(4).

D = −3HB + a0C .
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Perpetuants

Definition

A perpetuant is an indecomposable element of S(q) which remains
indecomposable in all S(k), k ≥ q hence in S =

∪
S(k).

In other words it gives an element of Iq/I2
q which lives forever, that

is it remains nonzero in all Ik/I2
k , ∀ k ≥ q.

In this sense it is perpetuant.

In other words, denoting by I ⊂ S the ideal of positive elements of
S perpetuants are essentially the elements of I \ I2.
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Perpetuants

Thus to describe perpetuants is strictly related to describe minimal
sets of generators for the graded algebra S = C[a0, a1, a2, . . .]U .

In other words, denoting by I ⊂ S the ideal of positive elements of
S we want to describe I/I2.

This space decomposes into a direct sum

I/I2 =
⊕

n,g∈N
Pn,g

with Pn,g the image of the elements in I of degree n and weight g .
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Perpetuants

In our main theorem, see page ??
we exhibit a space of perpetuants that is a bigraded subspace

Π = ⊕i ,gΠi ,g ⊂ I

which maps isomorphically to

I/I2 =
⊕

n,g∈N
Pn,g .

.

A basis of a space of perpetuants is thus a minimal set of
generators for the algebra S of U invariants.
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The theorem of Emile Stroh
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conjectured by Mac Mahon and proved by Stroh

∞∑
g=0

dim(Pn,g) xg =



x2n−1−1

(1 − x2)(1 − x3) · · · (1 − xn) for n > 2,

x2

(1 − x2) for n = 2,

1 for n = 1.

For n ≤ 3 proved by Sylvester.
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Our Main Theorem, development of Stroh

we use the partial order

(t2, . . . , tn) ⪰ (s2, . . . , sn) ⇐⇒ ti ≥ si for all i .

Theorem

The elements Uk = Uk2,...,kn = Ũ0,k2,...,kn with
∑n

i=2 i · ki = g and

k ⪰ n = (0, 2n−4, 2n−5, . . . , 4, 2, 1, 1), (resp. n = (0, 1))

form a basis of a space of perpetuants of degree n > 3 (resp.
n = 3) and weight g.

For n = 2 one perpetuant, U2k , in each even weight 2k > 0.
For n = 1 just a0.
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Notice

it is a remarkable fact that
we are unable to exhibit minimal sets of generators for U invariants
of forms of a given degree q but in fact we are able to do this for
the limit, infinite, case.
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The use of symmetric functions

Take variables λ1, . . . , λn and let Sn be the symmetric group
permuting the λi .

Definition

Denote by Σn,g ⊂ C[λ1, . . . , λn] the subspace of symmetric
polynomials in λ1, . . . , λn which are homogeneous of degree g .

This space has different combinatorial bases all indexed by
partitions of g into n parts.

Many are in fact bases for Z[λ1, . . . , λn]Sn .
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The use of symmetric functions

We first take as basis of Σn,g the simplest:
total monomial sums mh1,...,hn

i.e. the sum over the Sn-orbit of λh1
1 · · · λhn

n where
h1 ≥ h2 ≥ · · · ≥ hn ≥ 0 and h1 + · · · + hn = g :

mh1,...,hn(λ) :=
∑

Sn-orbit
λh1

σ(1) · · · λhn
σ(n).
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The use of symmetric functions
Another basis of the space Σn,g of symmetric functions is formed
by the monomials

ek1
1 . . . ekn

n ,
∑

j
jkj = g ,

n∏
i=1

(t + λi) = tn +
n∑

i=1
tn−iei

where ei is the i th elementary symmetric function.

The base change:

mh1,...,hn =
∑

k1,...,kn

αh1,...,hn;k1,...,knek1
1 . . . ekn

n . (1)

The αh1,...,hn,k1,...,kn are computable integers obtained inverting the
obvious expansion

ek1
1 . . . ekn

n =
∑

h1,...,hn

βh1,...,hn;k1,...,knmh1,...,hn . (2)
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The use of symmetric functions

Let An,g denote the subspace of C[a0, a1, a2, . . . , an, . . .] of
elements of degree n and weight g

Define the polynomials Ũk1,...,kn ∈ An,g by
the formula:

Ũk1,...,kn =
∑

h1,...,hn

αh1,...,hn;k1,...,kn

n∏
j=1

ahj ,

Observe that the polynomials Ũk1,...,kn form
a basis of An,g
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A basis of the U-invariants

The first main theorem is the formula:

DŨk1,...,kn =
{

0 if k1 = 0
Ũk1−1,...,kn if k1 > 0.

Example

DŨ0,2 = D(2a0a4 − 2a1a3 + a2
2) = 0.

This implies the Theorem
The elements Uk2,...,kn := Ũ0,k2,...,kn ,

∑n
i=2 iki = g form a basis of

the space Sn,g of the U-invariants of degree n and weight g .
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A duality for the U-invariants

Corollary

∞∑
g=0

dim(Σn,g) xg =
∞∑

g=0
dim(Sn,g) xg = 1

(1 − x2)(1 − x3) · · · (1 − xn)
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The partition function

Notice that in the series
∞∑

i=0
pi(n)x i = 1

(1 − x2)(1 − x3) · · · (1 − xn)

the integer pi(n) counts the number of ways in which the integer i
can be written as a sum of integers 2, 3, . . . , n hard to compute!.

In the movie "The Man Who Knew Infinity" there is a competition
between Mac Mahon and Srinivasa Ramanujan, to compute
p100(100)!
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Mac Mahon and Srinivasa Ramanujan
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The potenziante and umbral calculus
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The proof of the formula of Mac Mahon umbral calculus

We define a linear map E from the space of all polynomials in
auxiliary variables α1, . . . , αn (the umbrae) to the space of
polynomials of degree n in the variables a0, a1, a2, . . .,

E : C[α1, . . . , αn] → C[a0, a1, a2, . . .], α
[r1]
1 · · · α[rn]

n
E7→ ar1 · · · arn ,

1 a homogeneous polynomial of degree g , in the
αi , i = 1, . . . , n, is mapped to an isobaric polynomial of
weight g in the aj , and homogeneous of degree n.

2 The map E commutes with the permutation action on the αi ,
i = 1, . . . , n
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E(α[3]
1 α

[2]
2 ) = E(α[3]

3 α
[2]
1 ) = E(α[3]

3 α
[2]
1
∏

j ̸=1,3
a[0]

j ) = an−2
0 a2a3

E(α[2]
i α

[2]
j ) = E(α[2]

i α
[2]
j
∏

h ̸=i ,j
a[0]

h )) = an−2
0 a2

2.

The map E in not a homomorphism but if
f (α1, . . . , αh), g(αh+1, . . . , αn) are in disjoint variables we have

E(f (α1, . . . , αh) g(αh+1, . . . , αn))

= E(f (α1, . . . , αh))E(g(αh+1, . . . , αn))).
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The basic formula of umbral calculus

E ◦
n∑

i=1

∂

∂αi
=

∞∑
i=1

ai−1
∂

∂ai
◦ E = D ◦ E .
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The potenziante

Stroh defines the potenziante πn,g = πn,g(λ; a) by

πn,g := E

(
n∑

j=1
λjαj)[g ]

 =
∑

r1,...,rn∈N
r1+···+rn=g

λr1
1 · · · λrn

n ar1 · · · arn

where the α1 . . . , αn are all umbrae and λ some dual variables.

We now use the symmetry of the umbrae
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The potenziante

In πn,g(λ; a) the total monomial sum mh1,...,hn(λ) has as coefficient
the product ah1ah2 · · · ahn :

πn,g(λ; a) = E
(

(
n∑

r=1
λr αr )[g ]

)
=

∑
h1≥...≥hn≥0
h1+···+hn=g

mh1,...,hn(λ)ah1ah2 · · · ahn .
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example
With n = 2 and g = 4 we find

(λ1α1 + λ2α2)[4]

= λ4
1α

[4]
1 + λ4

2α
[4]
2 + (λ3

1λ2α
[3]
1 α2 + λ3

2λ1α
[3]
2 α1) + λ2

1λ2
2α

[2]
1 α

[2]
2 .

Applying E this gives

(λ4
1 + λ4

2)a0a4 + (λ3
1λ2 + λ3

2λ1)a1a3 + λ2
1λ2

2a2
2,

= m4,0(λ)a0a4 + m3,1(λ)a1a3 + m2,2(λ)a2
2.

With n = g = 3 we find

E((λ1α1 + λ2α2 + λ3α3)[3]) =

m3,0,0(λ)a2
0a3+m2,1,0(λ)a0a1a2+m1,1,1(λ)a3

1.
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Duality

πn,g(λ; a) ∈ Σn,g ⊗ C[a]n,g is a dualizing tensor
that is, it gives a duality between symmetric functions in n
variables of degree g and polynomials in the variables ai of degree
n and weight g .
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An elementary but not well known fact

Given two finite dimensional vector spaces U, W and denoting by
U∨, W ∨ their duals one has the canonical isomorphisms

U ⊗ W ≃ hom(U∨, W ) ≃ hom(W ∨, U).

A dualizing tensor π ∈ U ⊗ W is an element which corresponds,
under these isomorphisms, to an isomorphism U∨ ≃ W , W ∨ ≃ U.

Thus, a dualizing tensor π equals, for any basis u1, . . . , uk of U, to
π =

∑k
i=1 ui ⊗ wi , where w1, . . . , wk is a basis of W .
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A basic Formula

From the main Formula of umbral calculus one has

∞∑
i=1

ai−1
∂

∂ai
πn,g = Dπn,g = (

n∑
i=1

λi) πg−1,n = e1 πg−1,n

The meaning of this formula is that,
using the duality between symmetric functions in n variables and
polynomials in the ai of degree n:
the transpose of the operator D is the multiplication by
e1 =

∑n
i=1 λi .
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Use the basis by elementary symmetric functions

The potenziante πn,g in this basis appears as

πn,g =
∑

0≤k1,...,kn
k1+2k2+···+nkn=g

ek1
1 . . . ekn

n Ũk1,...,kn ,

Example

π2,4 = e4
1a0a4 + e2

2(2a0a4 − 2a1a3 + a2
2) + e2

1e2(a1a3 − 4a0a4).
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A basis of the U-invariants

We get from Dπn,g = (
∑n

i=1 λi) πn,g−1 = e1πn,g−1 :

Dπn,g =
∑

k1,...,kn≥0∑
i ·ki =g

ek1
1 . . . ekn

n DŨk1,...,kn =
∑

j1,...,jn≥0∑
i ·ji =g−1

ej1+1
1 . . . ejn

n Ũj1,...,jn

Example

π2,4 = e4
1a0a4 + e2

2(2a0a4 − 2a1a3 + a2
2) + e2

1e2(a1a3 − 4a0a4).

Dπ2,4 = e4
1a0a3 + e2

1e2(a1a2 − 3a0a3) = e1π2,3.
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A duality for the U-invariants, set ∑n
i=1 λi = 0

Definition

Denote by Σn,g ⊂ C[λ̄1, . . . , λ̄n] = C[λ1, . . . λn]/(
∑n

i=1 λi) the
subspace of symmetric polynomials in λ̄1, . . . , λ̄n which are
homogeneous of degree g (observe that ē1 =

∑n
i=1 λ̄i = 0).

This proves the first Theorem
The elements Uk2,...,kn := Ũ0,k2,...,kn form a basis of the space Sn,g
of the U-invariants of degree n and weight g dual, via π̄n,g , to the
basis ek2

2 . . . ekn
n of Σn,g .
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The ideas of Stroh

A sketch of the proof
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A sketch of the proof

the main idea is to describe, in the duality between symmetric
functions and U invariants, the:

space of symmetric functions orthogonal to the space of
decomposable elements.

The decomposable elements of Sn,g are

∑
1≤h≤n/2

Sn,g ,h, Sn,g ,h :=
g∑

j=0
Sh,j · Sn−h,g−j .
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A sketch of the proof

For a given h ∈ N, 1 ≤ h ≤ n/2 we have:

(λ1α1+· · ·+λnαn)[g ] =
g∑

j=0
(λ1α1+· · ·+λhαh)[j](λh+1αh+1+· · ·+λnαn)[g−j]

which implies the following decomposition of the potenziante:

πn,g(λ1, . . . , λn; a)=
g∑

j=0
πh,j(λ1, . . . , λh; a)·πn−h,g−j(λh+1, . . . , λn; a).
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A sketch of the proof

Consider the ideal Jh ⊂ C[λ1, . . . , λn] generated by the two
elements λ1 + · · · + λh and λh+1 + · · · + λn.

Main remark
Modulo this ideal the potenziante πn,g becomes a dualizing
element between the image of Σn,g and Sn,g ,h.
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A sketch of the proof

This implies that
the orthogonal to Sn,g ,h is the space of elements of Σn,g which are
multiples of the symmetric function

ph :=
∏

1≤j1<j2<...<jh≤n
(λ̄j1 + λ̄j2 + · · · + λ̄jh)
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A sketch of the proof

1 The orthogonal On,g to the decomposable elements∑
1≤h≤n/2 Sn,g ,h of Sn,g is thus the intersection of these

orthogonals,
2 so On,g is the space of elements of Σn,g which are multiples of

all the symmetric functions ph, 1 ≤ h ≤ n/2
3 but these are irreducible elements in the algebra of symmetric

functions so a common multiple is a multiple of their product!
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A sketch of the proof

Summarizing
The orthogonal to the decomposable elements

∑
1≤h≤n/2 Sn,g ,h of

Sn,g is the space On,g of elements of Σn,g which are multiples of
the product

qn :=
∏
h

ph, deg qn = 2n−1 − 1.

This space equals
On,g = qn · Σn,g−2n−1+1

dim On,g = dim Σn,g−2n−1+1 = dim(Pn,g)

from which Stroh’s Theorem holds.

This is the main step, the next is to analyze a basis of the
complement of this space of multiples.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction binary forms Perpetuants The theorem of Stroh The potenziante A sketch of the proof

The final Theorem

This is done by using leading exponents, of polynomials in
λ̄1, . . . , λ̄n−1 and proving, by duality, the stated theorem:

For n ≥ 4 we have the leading exponents le of qn and of en are the
same

le = (2n−2, 2n−3, . . . , 2, 1) where n := (0, 2n−4, 2n−5, . . . , 2, 1, 1).

qn = λ̄2n−2
1 λ̄2n−3

2 . . . λ̄n−1 + lower terms

en = e2n−4
3 e2n−5

4 . . . en−1en = λ̄2n−2
1 λ̄2n−3

2 . . . λ̄n−1 + lower terms
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The final Theorem

Theorem
The elements Uk = Uk2,...,kn = Ũ0,k2,...,kn with

k ⪰ n = (0, 2n−4, 2n−5, . . . , 4, 2, 1, 1)

(resp. n = (0, 1)) form a basis of a space of perpetuants of degree
n > 3 (resp. n = 3) and weight g.

The proof is by showing that the products of elementary functions
in the dual basis to the Uk = Uk2,...,kn for
k ̸⪰ n = (0, 2n−4, . . . , 2, 1, 1) form a basis of a complement of
On,g . This is done by looking at the leading exponents.
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