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Introduction

Perpetuant

is one of the several
concepts invented (in
1882) by J. J. Sylvester

in his investigations of
covariants for binary
forms.

| learned of this word
It appears in one of the from Gian-Carlo Rota
first issues of the who pronounced it with
American Journal of an enigmatic smile.
Mathematics which he
had founded a few years

before.

Perpetuant is a concept
of Invariant theory, and
a name which will hardly
appear in a
mathematical paper of
the last 70 years



Introduction

Invariant Theory



Introduction

Algebraic invariant theory in its simplest form

treats of a group G of linear transformations on a vector space V.

@ The action extends to polynomial functions S[V*] on V/, by
the formula

(g-)(v):=f(g"tv)

@ A polynomial f(v) is G invariant if

(g-f)(v):=f(g7v)=Ff(v), Vge G, veV.

o the invariants form a subalgebra of S[V*] denoted by S[V*]°.




Introduction

In 19" century the theory was developed essentially for V' the
space of homogeneous polynomials of some degree g in k—variables
and G the special linear group SL(k, C) acting on these variables
or for the direct sum of copies of such forms.

For k = 2 one then speaks of binary quantics or g—antics:

q
f(x,y) = Z aix97'y"| a general binary quantic.
i=0

qg=2,3,4,5,--- binary quadratic, cubic, quartic, quintic, etc.
The group acting is SL(2,C) (acts on x,y).

@ This is a g+ 1 dimensional vector space V

@ The polynomial functions over V; are Clag, a1, ap, . . ., aq].




binary forms

A quick course on

The invariants of a general binary quantic

Clao, a1, a2, - - -, aq]SL(27C) are thus special polynomials in the
variables ag, a1, . .., aq.
The space of polynomials Clag, a1, a2, . . ., aq] can be bigraded by

defining the weight g of a; to be i so that

A polynomial with terms all of the same weight is called isobaric. J




binary forms

a basic problem

of 19" century invariant theory was to

@ describe a minimal set of generators for invariants

@ and possibly also a minimal set of relations.

Classically generators for SL(2, C)—invariants were computed for
q < 8 (some gaps for g = 7).

Now with the help of computers a few other cases have been
analyzed for g < 12.



binary forms

SL(2,C)—invariants can be computed from

Use the formalism of divided powers

AP i —i] [
A= 20— (g ] = 3 A0
’ i=0

Consider the polynomial rings ---A(q) C A(g+1) C ---
A(q) :=Clao, a1, a2,...,aq), g=0,...,00

and the action on A(q) of the additive group A € C = U subgroup
of SL(2,C)

, AGC}

v={js

induced by the action on the variables:

X

X+ Ay
y

1 A
01




binary forms
A quick course on

We can see that the U action is (normalizing the coefficients):

A-ag=ag, A-a;= ag\—+ ai, )\-32230)\[2]+31)\+32,
A-az = ao)\[3] + 31)\[2] + a)\ + as,
A-ag = ao)\[4] + 31)\[3] + 32)\[2] + azA+ ag, ...

A-ag=aoAd 4 a e L aale-2 4o g A+ g,




binary forms

U—invariants

denote the ring of U-invariants of binary forms of degree g (or
polynomials) by

S(q) = Clag, a1, a2, - . ., aq]U.

@ Then S(q) = ®5(q)kg is bigraded, that is it decomposes into
a direct sum of components, homogeneous of degree k and
isobaric of weight g.

@ The ring of invariants under SL(2,C) is the subring of S(q)
direct sum of the homogeneous and isobaric components with

_ gk
§= "3




binary forms

A quick course on

That is a homogeneous invariant of a binary g—form is a U
invariant with the relation between

the degree k and the weight g

_ 9k
=L

As example the discriminant of the cubic (g = 3):
D = 3a2a3 + 6apayapaz — 4ajas — 4agas — a%a%

of degree 4 and weight 6 = 32%4, generates the algebra of invariants
of the cubic. For g = 2 we have also the discriminant a% — 23apan.



binary forms

Example of the cubic (new notations for a;)

The algebra of U—invariants, for the cubic, is generated by 4
elements. The discriminant D, and ag, H, T:

D = 9a%a3 — 18agaiaras + 8apas + 6ajas — 3ataj

a, H= af —2agay, T = af — 3apa1a + 33333

the element ap (degree 1, weight 0), and H of degree 2 and
weight 2, T of degree 3 and weight 3.

They are related by the syzygy H® + Da3 — T2 = 0 of degree 6 and
weight 6.



binary forms

Example of the quartic

The algebra of U—invariants, for the quartic is generated by 5
elements ag, B, C, H, T.

a, H= a% —2apap, T = af — 3agaiar + 33(2)33
B = 2agas — 2a1a3 + a%,

C = 235’ — bajazas + 9aoa§ + 63%34 — 12agaray.

Relation |3a2HB —a3C - H*+ T2 =0]|

Notice that now D = —3HB + a5 C.



binary forms

commutative algebra

in modern terms given a graded commutative algebra A = ©°,A;
over a field F = Ay, setting | = ®72;A; we have that the elements
of I? are decomposable and a minimal set of generators of A is a
set of homogeneous elements giving a basis of ///>.

I/I? is a graded vector space and it is finite dimensional if and only
if A is finitely generated over F.



binary forms

commutative algebra

in modern terms given a graded commutative algebra A = ©°,A;
over a field F = Ay, setting | = ®72;A; we have that the elements
of I? are decomposable and a minimal set of generators of A is a
set of homogeneous elements giving a basis of ///>.

I/I? is a graded vector space and it is finite dimensional if and only
if A is finitely generated over F.
Apply this to A = 5(q)

and denote by /; the subspace of U-invariants with no constant
term.

Then Iq/lg is bigraded by degree and weight and a basic problem is
to prove that it is finite dimensional and compute the dimension of
its bigraded pieces.

y




binary forms

a basic problem

A lot of work by

Cayley, Sylvester, Clebsch, Gordan and others was devoted to
compute U—invariants with success for forms of degree g < 6,
there are 23 generators for g = b5 the largest of degree 18.

Recent work, with the help of computers, gives further results up
to degree 12.

A crowning point of this research was Gordan’s proof that these
algebras of invariants are finitely generated, but no explicit
formulas for either the generators or even for just the weight and
degree of these generators is known for g > 12.



binary forms

Hilbert

The theory was revolutionised by Hilbert at the end of the century.

He proved the finiteness theorem of forms in any number of
variables and asked, in his 14" problem, if the finiteness theorem is
true for every group.

Negative answer by Nagata 1958.



Perpetuants

We can finally define:

Perpetuants



Perpetuants

a stable problem

From the formulas it is clear that the ring of U—invariants S(q) is
contained in the ring of U-invariants S(g + 1) and so on.

So one can define the ring of U—invariants S = |J, S(q) as the
subring of the polynomial ring:

(C[ao,al,az,...,a,,,...], a,-,i:O,...,oo

in the infinitely many variables a;, i =0,..., 00 invariant under
the limit action of the 1-parameter subgroup U.



Perpetuants

a basic theorem

This 1-parameter subgroup \-ax = ZJ 0 aJA[k_J]

has as infinitesimal generator the differential operator

> 0
D=> ai15— D(a)=ai1, D(a)=0.
= aj

For each ¢ =0,1,...,00 the algebra S = Cla, a1, az, . . . .aq]U of
U-invariants is formed by the polynomials f in the variables
ao, a1, a2, . . ., aq, satisfying Df =0 i.e.:

Za, 19 f(ao, a1, a2,...) =0, D=Z:a,-_18i
i=1




Perpetuants

Perpetuants

It was quickly discovered that

@ an element of S(q), which is indecomposable in S(q), need
not remain indecomposable in S(q + 1).

@ In other words: the maps lq/lg — Iq+1/lc2,

injective,

1 need not be

@ or also: a minimal set of generators for S(g) cannot be
completed to one for S(gq + 1).

As an example the generator D for S(3) is decomposable in S(4).

D = -3HB+ aC.



Perpetuants

Perpetuants

Definition

A perpetuant is an indecomposable element of S(g) which remains
indecomposable in all S(k), kK > g hence in S = J S(k).

In other words it gives an element of Iq/lfl which lives forever, that
is it remains nonzero in all Ix/12, ¥ k > q.

In this sense it is perpetuant.

In other words, denoting by / C S the ideal of positive elements of
S perpetuants are essentially the elements of /\ /2. J




Perpetuants

Perpetuants

Thus to describe perpetuants is strictly related to describe minimal
sets of generators for the graded algebra S = Clag, a1, a2, . . .Y

In other words, denoting by / C S the ideal of positive elements of
S we want to describe ///2.

This space decomposes into a direct sum

/P = Png

n,geN

with P, ; the image of the elements in / of degree n and weight g.



Perpetuants

Perpetuants

In our main theorem, see page 7?7

we exhibit a space of perpetuants that is a bigraded subspace

= @i,gnhg cl

which maps isomorphically to

I/P= @ Png.

n,geN

A basis of a space of perpetuants is thus a minimal set of
generators for the algebra S of U invariants.



The theorem of Stroh

The theorem of Emile Stroh



The theorem of Stroh
conjectured by Mac Mahon and proved by Stroh

21
f 2
1)1 —x3)-(1—xn) "=
Z dim(Png) X% = x? B
= 7(1 —53) for n=2,
1 for n=1.

For n < 3 proved by Sylvester. J




The theorem of Stroh

Our Main Theorem, development of Stroh

we use the partial order

(tay. .. tn) = (S2,...,50) < t; >s; forall i.

ﬁ_

The elements Ux = Uy, k, = Uo,kz,...,k with Y7 i - ki = g and

k>=n=(0,2""%2""° ..4211), (resp.n=(0,1))

form a basis of a space of perpetuants of degree n > 3 (resp.
n = 3) and weight g.

For n = 2 one perpetuant, Uy, in each even weight 2k > 0.
For n =1 just ap.




The theorem of Stroh

Notice

it is a remarkable fact that

we are unable to exhibit minimal sets of generators for U invariants
of forms of a given degree g but in fact we are able to do this for
the limit, infinite, case.




The theorem of Stroh

The use of symmetric functions

Take variables A1,..., A, and let S, be the symmetric group
permuting the ;.

Definition

Denote by ¥, , C C[A1,. .., Ay] the subspace of symmetric
polynomials in A1, ..., A\, which are homogeneous of degree g.

This space has different combinatorial bases all indexed by
partitions of g into n parts.

Many are in fact bases for Z[A1, ..., A]*".



The theorem of Stroh

The use of symmetric functions

We first take as basis of >, ; the simplest:
total monomial sums mp, . p,

i.e. the sum over the S,-orbit of )\i’l - AP where
hit>hy>--->h,>0and hy +---+ h, = g:

My h(A) = Z Ac'll(l)"*fl?n)-
Sp-orbit



The theorem of Stroh

The use of symmetric functions

Another basis of the space ¥, ; of symmetric functions is formed
by the monomials

n

n
el ..oy, D k=g [[t+a)=t"+> 1" e

j i=1 i=1

where e; is the i ™ elementary symmetric function.

The base change:

K K
Mp,  py = Z Othy... hniky,o kn©1 - - €17 (1)
Kiooook

The ... by ki,....k, are computable integers obtained inverting the
obvious expansion

k:
et el = ) Bhyrhoikisko Moy (2)
h17~~~ahn




The theorem of Stroh

The use of symmetric functions

Let A, o denote the subspace of Clag, a1, a2,...,an,...| of
elements of degree n and weight g

Define the polynomials Dkl,u.,kn € Ang by
the formula:

Ukl,...,k Z Qhy,...,hnik1,....k Hahj’

h17 7h

Observe that the polynomials lNJk17,_.7kn form
a basis of A, o




The theorem of Stroh

A basis of the U-invariants

The first main theorem is the formula:

0 if k=0

DU =<
K-k {Ukl—l,...,k,, if ki > 0.

DUOQ = D(2aoa4 — 2a1a3 + a%) =0.

v

This implies the Theorem

The elements Uy, .. i, := Uo,kz,...,k,,, >, iki = g form a basis of
the space S, ; of the U-invariants of degree n and weight g.




The theorem of Stroh
A duality for the U-invariants




The theorem of Stroh

The partition function

Notice that in the series

1
Z"’ T (1 —x3)(1—x")

the integer p;(n) counts the number of ways in which the integer i
can be written as a sum of integers 2,3, ..., n hard to compute!.

In the movie "The Man Who Knew Infinity" there is a competition
between Mac Mahon and Srinivasa Ramanujan, to compute
P100(100)/



The theorem of Stroh

Mac Mahon and Srinivasa Ramanujan



The potenziante

The potenziante and umbral calculus ‘



The potenziante

The proof of the formula of Mac Mahon

We define a linear map E from the space of all polynomials in
auxiliary variables aq, ..., a, (the umbrae) to the space of
polynomials of degree n in the variables ag, a1, a», . . .,

. [r] E
E: Clay,...,an — Clag, a1, a2,...], o --~a£,r"] = ap, - ar,,

© a homogeneous polynomial of degree g, in the
«aj, i=1,...,n, is mapped to an isobaric polynomial of
weight g in the aj, and homogeneous of degree n.

© The map E commutes with the permutation action on the «;,
i=1,...,n




The potenziante

E(a[13]a[22]) = E(o (3] [2] [3] [2 H a = 2 2apas
J#1,3
2] [2 2] [2
E([]J[] ][]Ha ) = al2a2.
h#i,j
The map E in not a homomorphism but if
flai,...,ap), g(apt1,--.,an) are in disjoint variables we have

E(f(aa,...,an) g(apt1s .- an))
= E(f(a1,...,ap)E(g(apst,---,an))).




The potenziante

The basic formula of umbral calculus

oE DoE.



The potenziante

The potenziante

Stroh defines the potenziante m, g = m, g(\; a) by

n
o _ rn I
g =E| O Na)El = S AL-Ara,--a,
Jj=1 ey rn€EN
rn+-+rn=g
where the o ..., a, are all umbrae and X\ some dual variables.

We now use the symmetry of the umbrae



The potenziante

The potenziante

In 7, ¢(A; @) the total monomial sum mp, 4 (A) has as coefficient
the product ap ap, - - - ap,:

Tn g(>‘ a ( Z )\,a, g]) Z mhl,_.,7hn()\)ahl dp, * - dah,-

h>..>h,>0
hi+--+h,=g




The potenziante
example

With n =2 and g = 4 we find

(101 + doap)t
— A4 [4]

109 + )\ga[;] + ()\:;’)\204[13]a2 + /\gkla[;]al) + /\%)\%a[f]a[;].

Applying E this gives

(Af + XDagas + (A3 Ao + A3A1)aras + A3A3a3,

m4,0()\)aoa4 + m3,1()\)3133 + m2,2(>\)a%.
With n =g = 3 we find

E(()\lal + )\20&2 + )\30[3)[3]) =

m3,0,0(\)agas+mz,10(N)aoaraz+my1(N)a3




The potenziante

Duality

Tng(Aa) € Lng ®Cla]ng is a dualizing tensor

that is, it gives a duality between symmetric functions in n
variables of degree g and polynomials in the variables a; of degree
n and weight g.




The potenziante

An elementary but not well known fact

Given two finite dimensional vector spaces U, W and denoting by
UY, WYV their duals one has the canonical isomorphisms

U® W =~ hom(UY, W) ~ hom(W", U).

A dualizing tensor m € U ® W is an element which corresponds,
under these isomorphisms, to an isomorphism UY ~ W, WV ~ U.

Thus, a dualizing tensor w equals, for any basis uy,..., ux of U, to
T = Zf-;l u; @ w;, where wy, ..., wy is a basis of W.



The potenziante

A basic Formula

From the main Formula of umbral calculus one has

Zal 1 7['n7g D7Tn,g— Z)\ Tg—1,n = €1 Tg—1,n
i=1

The meaning of this formula is that,

using the duality between symmetric functions in n variables and
polynomials in the a; of degree n:

the transpose of the operator D is the multiplication by
e] = Z?:l )\,‘.




The potenziante

Use the basis by elementary symmetric functions

The potenziante 7, ¢ in this basis appears as

k kn [~
Tng = Z e11 N Uklw,kn?

0<ki,....kn
ki+2ko+--+nkn=g

T4 = efaoas + e3(2apas — 2ajas + a3) + eex(a1as — 4apas).




The potenziante

A basis of the U-invariants

We get from Drp g = (D071 A\i) Thg—1 = €1Mpg—1

_ okt kn i _ 11+1 )
Drp g = Z ef'...ef DUk, = Z e U
Ki,....kn>0 J1y--jn>0

S iki=g > iji=g—1

4 2 2 2
T4 = ejdoas + e5(2apas — 2a1a3 + a5) + ejes(araz — 4apas).

4 2
D7T2’4 = ejdpasz + e1e2(3132 = 33033) = e1m23.




The potenziante

A duality for the U-invariants, set >7 ; A\; =0

Definition

Denote by g C C[A1, ..., An] = C[Ar, ... An] /(3721 Ai) the
subspace of symmetric polynomials in Ay, ..., A, which are
homogeneous of degree g (observe that 1 = > ; A; = 0).

This proves the first Theorem

The elements Uy, k, := onkg,...,k,, form a basis of the space S, ¢
of the U-invariants of degree n and weight g dual, via 7, g, to the
basis e ... ek of T, .




The potenziante
The ideas of Stroh

A sketch of the proof



A sketch of the proof

A sketch of the proof

the main idea is to describe, in the duality between symmetric
functions and U invariants, the:

space of symmetric functions orthogonal to the space of
decomposable elements.

The decomposable elements of S, , are

g
Z Snvgvh’ Sn7g7h = Z Shz/ ’ Sn_h7g_j'
Jj=0

1<h<n/2



A sketch of the proof

A sketch of the proof

For a given h € N, 1 < h < n/2 we have:

g
()\10414-' : -+/\nan)[g] = Z()\lari-' . ~+)\hah)m()\h+1ah+1+- : '—l-)\nan)[gfj]
j=0

which implies the following decomposition of the potenziante:

g
7T,,,g()\1, cooy )\n; a):Zm,,j()\l, socy )\h; a)-7r,,_h7g_j()\h+1, cooy )\,,; a)
Jj=0




A sketch of the proof

A sketch of the proof

Consider the ideal J, C C[A1,..., Ay generated by the two
elements A\; + -+ Ay and A1+ -+ Ap.

Modulo this ideal the potenziante 7, , becomes a dualizing
element between the image of X,z and S, 4 4.




A sketch of the proof

A sketch of the proof

This implies that

the orthogonal to S, . 4 is the space of elements of f,,’g which are
multiples of the symmetric function

Ph = I Cu+Xa++X,)

1< <p<...<jp<n




A sketch of the proof

A sketch of the proof

@ The orthogonal O, ; to the decomposable elements
>_1<h<n/2 Sng,h Of Sng is thus the intersection of these
orthogonals,

@ so O, is the space of elements of ¥, , which are multiples of
all the symmetric functions pp, 1 < h < n/2

© but these are irreducible elements in the algebra of symmetric
functions so a common multiple is a multiple of their product!

4




A sketch of the proof

A sketch of the proof

Summarizing
The orthogonal to the decomposable elements ;<< /5 Sng,n Of
Sn,g is the space O,z of elements of ¥, , which are multiples of

the product

Gn = th, degg, =2""1—1.
h

This space equals

On,g =4dn- zn,g—2"*1—‘,-1

dim O,Lg = dim f,,’g_znfl_ﬂ = dim('Dn,g)

from which Stroh’s Theorem holds.

This is the main step, the next is to analyze a basis of the
complement of this space of multiples.



A sketch of the proof

The final Theorem

This is done by using leading exponents, of polynomials in
Al,...,An—1 and proving, by duality, the stated theorem:

For n > 4 we have the leading exponents /e of g, and of e" are the
same

le= (272,23 ...,2,1) where n:=(0,2""% 275 ... .2,1,1).
gn = 5\3"—25\3'1_3 ... Ap_1 + lower terms

n—4 n—5 ~on—2<-on—3 <
e = e% eﬁ ...ep_1ep = )\% )\g ... Ap—1 + lower terms

<




A sketch of the proof

The final Theorem

Theorem

The elements Uk = Uy, ..k, = lNJo,kzw’k with

k=n=(0,2""%2""5_..4211)

(resp. n = (0,1)) form a basis of a space of perpetuants of degree
n> 3 (resp. n=3) and weight g.

v

The proof is by showing that the products of elementary functions
in the dual basis to the Ux = U, k, for
k#n=(0,2""%...,2,1,1) form a basis of a complement of
Op,g. This is done by looking at the leading exponents.



A sketch of the proof
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