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Key de�nitions - totally n-rewritability

Let (S , ·) be a semigroup, n ≥ 2 an integer.

De�nition

S is said to be totally n-rewritable (S ∈ Pn)

if, for each n-ple (x1, x2, . . . , xn) of elements of S ,

there is a non-trivial permutation σ

of the set {1, 2, . . . , n} such that

x1x2 · · · xn = xσ(1)xσ(2) · · · xσ(n).
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Key de�nitions - n-rewritability

Let (S , ·) be a semigroup, n ≥ 2 an integer.

De�nition

S is said to be n-rewritable (S ∈ Qn)

if, for any elements x1, x2, . . . , xn in S ,

there exist permutations σ and τ

of {1, 2, . . . , n}, σ 6= τ , such that

xσ(1)xσ(2) · · · xσ(n) = xτ(1)xτ(2) · · · xτ(n).
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Some more properties - Pn-sequenceability

Let (G , ·) be a group, n ≥ 2 an integer.

De�nition

G is said to be Pn-sequenceable

if we can write the elements of G in a sequence (xα)α∈Λ,

Λ a well-ordered set, such that for every α ∈ Λ,

α + n − 1 ≤ maxΛ if this exists, the product

xαxα+1 · · · xα+n−1 can be rewritten in at least one way, i.e.

there exists a non-trivial permutation σ

of the set {0, 1, . . . , n − 1} such that

xαxα+1 · · · xα+n−1 = xα+σ(0)xα+σ(1) · · · xα+σ(n−1).
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Some more properties - Pn-sequenceability

Theorem

Every group G is P4-sequenceable.

Theorem

Every countably in�nite group G is P3-sequenceable.

P. L., M. Maj, Some remarks on Pn-sequenceable groups, Arch.
Math. 60 (1993), 15-19.
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Some more properties - Rn

Let (G , ·) be a group, n ≥ 2 an integer.

De�nition

G is said to be an Rn-group

if every in�nite subset X of G contains

a subset {x1, . . . , xn} of n elements such that

x1x2 · · · xn = xσ(1)xσ(2) · · · xσ(n)

for some non-trivial permutation σ.
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Some more properties - Rn

Theorem

A group G is an Rn-group for some integer n

if and only if G has a normal subgroup F such that

G/F is �nite, F is an FC -group and

the exponent of F/Z (F ) is �nite.

M. Curzio, P. L., M. Maj, A. Rhemtulla, GROUPS WITH

MANY REWRITABLE PRODUCTS, Proc. Amer. Math. Soc. 115
no. 4 (1992), 931-934.
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Some more properties - Commutators

De�nition

Let G be a group and let x1, x2, ... be elements of G .

The commutator of x1 and x2 is

[x1, x2] = x−1
1

x−1
2

x1x2.

More generally, a simple commutator of weight n ≥ 2

is de�ned recursively by the rule

[x1, ..., xn] = [[x1, ..., xn−1] , xn].

Patrizia Longobardi - Università di Salerno Interconnections between Set Addition and Rewritability



Some more properties - Cn

De�nition

A group G is said to be a Cn-group
if, for each n-ple (x1, x2, . . . , xn) of elements of G ,

there is a non-trivial permutation σ

of the set {1, 2, · · · , n} such that

[x1, . . . , xn] =
[
xσ(1), . . . , xσ(n)

]
.

Results in

P. L., ON GROUPS WITH A PERMUTATIONAL PROPERTY ON

COMMUTATORS, Proc. "GROUPS - KOREA 1988", Lecture Notes
in Mathematics - Springer 1398 no. 4 (1989), 110-116.
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Some more properties - PSPn

De�nition

Let G be a group and n ≥ 2.

The group G is said to be a PSPn-group

if, for each n-ple (H1,H2, . . . ,Hn) of subgroups of G ,

there is a non-trivial permutation σ

of the set {1, 2, . . . , n} such that

H1 · · ·Hn = Hσ(1) · · ·Hσ(n).
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Some more properties - PSPn

Results in

A.H. Rhemtulla, A.R. Weiss, Groups with permutable subgroup

products, Proc. 1987 Singapore Conference in Group Theory, Walter

der Gruyter, Berlin, New York (1989), 485-495.

M. Maj, Some remarks on groups with permutable subgroup

products, Comm. Algebra, 17 no. 10 (1989), 2539-2555.

P. L., M. Maj, A. Rhemtulla, Periodic groups with permutable

subgroup products, Math. Proc. Camb. Phil. Soc., 106 (1989),

431-437.

P. L., M. Maj, A. Rhemtulla, Residually Solvable PSP-Groups,
Boll. U.M.I., 7 no. 7-B (1993), 253-261.
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Starting point - Freiman-Schein's paper

Gregory A. Freiman, Boris M. Schein

INTERCONNECTIONS BETWEEN THE STRUCTURE

THEORY OF SET ADDITION AND REWRITABILITY IN

GROUPS

Proc. Amer. Math. Soc. 113 no. 4 (1991), 899-910.
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Starting point - Freiman-Schein's paper

Gregory A. Freiman, Boris M. Schein

Interconnections between the Structure Theory on Set

Addition and Rewritability in Groups

Proc. Amer. Math. Soc. 113 no. 4 (1991), 899-910.

Abstract

An approach to groups and semigroups stemming from the

structure theory of set addition turns out to have much in

common with the so-called permutation or rewritable

properties. We explain these connections and show how these

properties take their place in a wider class of interesting and

naturally arising problems.
. . .
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Starting point - Freiman-Schein's paper

Introduction

In recent years semigroups and groups satisfying the so-called

permutation or rewritable properties attracted considerable

attention.

. . .

Problems connected with permutation and rewritable

properties of groups and semigroups �nd their natural place in

the structure theory of set addition.

The goal of this paper is to show how the problems of
rewritability and a class of analogous problems can be
approached from the point of view of the structure theory of
set addition. This approach gives rise to many new and
natural questions about rewritability and may indicate possible
ways of solving these problems.
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Starting point - Freiman-Schein's paper

We are grateful to Professors Ya. G. Berkovich and

D. Gorenstein for drawing our attention to possible

connections between the structure theory of set addition and

rewritability.
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Additive Number Theory - Set Addition

Additive Number Theory

Set Addition

Gregory A. Freiman,
Foundations of a structural theory of set addition
Kazan, 1966 (Russian); English transl.: Translations of

mathematical monographs, 37, American Mathematical

Society, Providence, Rhode Island, 1973.
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Background

Additive Number Theory

Set Addition

M.B. Nathanson
Additive Number Theory - Inverse Problems and the
Geometry of Sumsets
Springer, New York, 1996.

A. Geroldinger, I.Z. Ruzsa,
Combinatorial Number Theory and Additive Group Theory
Birkäuser, Basel - Boston - Berlin, 2009.

Patrizia Longobardi - Università di Salerno Interconnections between Set Addition and Rewritability



Basic de�nition

De�nition

If X1, . . . ,Xn are sets of integers (n ≥ 2), then we put

X1 + · · ·+ Xn := {x1 + · · ·+ xn | x1 ∈ X1, . . . , xn ∈ Xn}.

If X is a set of integers and X1 = · · · = Xn = X ,

then we denote the set X1 + · · ·+ Xn by nX .

The set X1 + · · ·+ Xn is also called

the (Minkowski) sumset of X1, . . . ,Xn.
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Basic de�nition

Main Problem

Let X be a �nite set of integers and consider

2X := {x1 + x2 | x1, x2 ∈ X} .
What can be said about 2X if we know some property of X ?

What can be said about X if we have some bound for |2X | ?
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Background

Remark (1)

Let X be a �nite set of integers with k elements. Then

|2X | ≥ 2k − 1.

Proof. Let X = {x1, x2, . . . , xk}, and assume x1 < x2 < · · · < xk .

Clearly

2x1 < x1 + x2 < 2x2 < x2 + x3 < 2x3 < · · · < 2xk−1 < xk−1 + xk < 2xk

and each of these elements belongs to 2X . Hence |2X | ≥ 2k − 1, as

required. //
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Background

Remark (2)

Let X be a �nite set of integers with k elements.

If X is an arithmetic progression:

X = {a, a + r , a + 2r , . . . , a + (k − 1)r},

then

|2X | = 2k − 1.

Proof. We have

2X = {2a, 2a + r , 2a + 2r , ..., 2a + (2k − 2)r}.

//
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Background

Remark (3)

Let X be a �nite set of integers with k elements.

If |2X | = 2k − 1, then X is an arithmetic progression.

Proof. Let X = {x1, x2, . . . , xk}, and assume x1 < x2 < · · · < xk . Then

2X = {2x1, x1 + x2, 2x2, x2 + x3, 2x3, . . . , 2xk−1, xk−1 + xk , 2xk} with
2x1 < x1 + x2 < 2x2 < x2 + x3 < 2x3 < · · · < 2xk−1 < xk−1 + xk < 2xk .
Clearly x2 = x1 + (x2 − x1).
It holds 2x1 < x1+ x3 < 2x3 with x1+ x3 6= x1+ x2, x2+ x3. Therefore
x1 + x3 = 2x2 and x3 = 2x2 − x1 = x2 + (x2 − x1). Analogously
x2 + x4 = 2x3 and x4 = 2x3 − x2 = x3 + (x3 − x2) = x3 + (x2 − x1),
and so on. //
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Background
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Background

Gregory A. Freiman, Structure theory of set addition, Astérisque, 258
(1999), 1-33.

"Thus a direct problem in additive number theory is a
problem which, given summands and some conditions, we
discover something about the set of sums. An inverse
problem in additive number theory is a problem in which,
using some knowledge of the set of sums, we learn something
about the set of summands."
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Basic de�nition

De�nition

If X is a subset of a group (G ,+), write

2X = X + X := {x + y | x , y ∈ X}.
2X is also called the double of X .

If G is a multiplicative group, then we put

X 2 = XX := {xy | x , y ∈ X}.
X 2 is also called the square of X .
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Background - some direct results

Remark

Let X be a �nite subset of a group G. Then

|X | ≤ |X 2| ≤ |X |2.

The bounds are sharp.
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Background - some direct and inverse results

Example

If X is a subgroup of G , then X 2 = X .

More generally, if X = xH , where H is a subgroup of G and

xH = Hx , then X 2 = xHxH = x2H and |X 2| = |X |.

Proposition

Let X be a non-empty �nite subset of a group G.

|X 2| = |X | if and only if X = xH, where H ≤ G and xH = Hx .
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Results - Freiman-Schein's paper

Let (S , ·) be a semigroup, n ≥ 2 an integer.

De�nition

Let X a subset of S .

Write

X [n] = {x1 · · · xn|x1, . . . , xn ∈ X , xi 6= xj for i 6= j}.

Remark

S is n-rewritable if and only if

|X [n]| < n! for every subset X of S of order n.
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Results - Freiman-Schein's paper

Let (G , ·) be a group, 1 ≤ n ≤ 6 an integer.

De�nition

G is said to be an R(3, n)−group (or G ∈ R(3, n))

if |X [3]| ≤ n for every subset X of G of order 3.

Theorem

G is 3-totally rewritable if and only if

G is an R(3, 2)−group.
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Connections - the small squaring property

Let (G , ·) be a group, m ≥ 2 an integer.

De�nition

G is said to have the square property on m−sets

(or G ∈ DS(m))

if |X 2| < m2 for every subset X of G of order m.

Theorem (G.A. Freiman, 1981)

G ∈ DS(2) if and only if G is a Dedekind group.
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Connections - the small squaring property

Theorem

Groups in DS(3) have been classi�ed.

J.G. Berkovich, G.A. Freiman, C.E. Praeger, Small squaring

and cubing properties of �nite groups, Bull. Austral. Math. Soc. 44
(1991), 429-450.

P. L., M. Maj, The classi�cation of groups with the small squaring

property on 3-sets, Bull. Austral. Math. Soc. 46 (1992), 263-269.
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Connections - the small squaring property

Theorem

A group G is in DS(m) for some m ≥ 2

if and only if

either G is nearly-dihedral or G (2) is of �nite order.

M. Herzog, P. L., M. Maj, On a combinatorial problem in group

theory, Israel J. Math. 82 (1993), 329-340.

De�nitions

A group G is said to have the nearly-dihedral if it contains a normal

abelian subgroup H of �nite index, on which each element of G acts by

conjugation either as the identity or as the inverting automorphism.

We denote by G (2) the subgroup of G
generated by the squares of all elements of G .
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Problems

Main Problem

What happens if G is any torsion-free group?

Which bounds can we get on |X 2|
if X is a �nite subset of a torsion-free group?

What about inverse results for G torsion-free?
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Background - direct results

Proposition

If X is a non-empty �nite subset of the group of the integers, then we

have

|2X | ≥ 2|X | − 1.

More generally:

Theorem (J.H.B. Kemperman, Indag. Mat., 1956)

If X is a non-empty �nite subset of a torsion-free group, then we have

|X 2| ≥ 2|X | − 1.
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A de�nition

De�nition

If a, r 6= 1 are elements of a multiplicative group G , a geometric left

(rigth) progression with ratio r and length n is the subset of G

{a, ar , ar 2, · · · , arn−1} ({a, ra, r 2a, · · · , rn−1a}).

If G is an additive abelian group

{a, a + r , a + 2r , · · · , a + (n − 1)r}

is called an arithmetic progression with di�erence r and length n.
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An example

Example

If X = {a, ar , ar 2, · · · , arn−1} is a geometric progression in a

torsion-free group and ar = ra, then

X 2 = {a2, a2r , a2r 2, · · · , a2r 2n−2} has order 2|X | − 1.
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Background

Theorem (G.A. Freiman, B.M. Schein, Proc. Amer. Math. Soc., 1991)

If X is a �nite subset of a torsion-free group, |X | = k ≥ 2,

|X 2| = 2|X | − 1

if and only if

X = {a, aq, · · · , aqk−1}, and either aq = qa or aqa−1 = q−1.

In particular, if |X 2| = 2|X | − 1, then X is contained in a left coset of a

cyclic subgroup of G .
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Background - inverse results

Theorem (Y.O. Hamidoune, A.S. Lladó, O. Serra, Combinatorica, 1998)

If X is a �nite subset of a torsion-free group, |X | = k ≥ 4,

then

|X 2| ≤ 2|X |

if and only if there exist a, q ∈ G , aq = qa such that

X = {a, aq, · · · , aqk} \ {c}, with c ∈ {a, aq}.
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Doubling problems

Let G be a group and X a �nite subset of G .

Let α, β be real numbers.

Problem

What is the structure of X if |X 2| satis�es

|X 2| ≤ α|X |+ β ?

Problems of this kind are called inverse problems of doubling type in

additive number theory. The coe�cient α, or more precisely the ratio
|X2|
|X | , is called the doubling coe�cient of X .

Inverse problems of doubling type have been �rst investigated by G.A.

Freiman.
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Doubling property

There are two main types of questions one may ask.

Question

What is the general type of structure that X can have if

|X 2| ≤ α|X |+ β?

How behaves this type of structure when α increases?

Studied recently by many authors:

E. Breuillard, B. Green, I.Z. Ruzsa, T. Tao, . . .

Very powerful general results have been obtained (leading to a

qualitatively complete structure theorem thanks to the concepts of

nilprogressions and approximate groups).
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Small doubling problems

But these results are not very precise quantitatively.

Question

For a given (in general quite small) range of values for α �nd the precise
(and possibly complete) description of those �nite sets X which satisfy

|X 2| ≤ α|X |+ β,

with α and |β| small.

Problems of this kind are called inverse problems of small doubling

type.
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Small doubling problems

Theorem (G.A. Freiman, 1959)

Let X be a �nite set of integers with k ≥ 3 elements and

suppose that

|2X | ≤ 3k − 4.

Then X is contained in an arithmetic progression of size

2k − 3:

{a, a + q, a + 2q, · · · , a + (2k − 4)q}.
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Small doubling problems

Conjecture (G.A. Freiman)

If G is any torsion-free group, X a �nite subset of G , |S | ≥ 4,

and

|X 2| ≤ 3|X | − 4,

then S is contained in a geometric progression of length at
most 2|X | − 3.

Patrizia Longobardi - Università di Salerno Interconnections between Set Addition and Rewritability



Small doubling problems

Theorem (G.A. Freiman)

Let X be a �nite set of integers with k ≥ 2 elements and suppose that

|2X | ≤ 3k − 3.

Then one of the following holds:

(i) X is contained in an arithmetic progression of size at most 2k − 1;

(ii) X is a bi-arithmetic progression

X = {a, a+q, a+2q, · · · , a+(i−1)q}∪{b, b+q, a+2q, · · · , b+(j−1)q};

(iii) k = 6 and X has a determined structure.
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Small doubling problems

Problem

Let G be any torsion-free group, X a �nite subset of G , |X | ≥ 3.

What is the structure of X if

|X 2| ≤ 3|X | − 3?
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Small doubling problems

Freiman studied also the case |2X | = 3|X | − 2, X a subset of the

integers. He proved that, with the exception of some cases with |X |
small, then either X is contained in an arithmetic progression or it is the

union of two arithmetic progressions with same di�erence.

Conjecture (G.A. Freiman)

If G is any torsion-free group, X a �nite subset of G , |X | ≥ 11, and

|X 2| ≤ 3|X | − 2,

then X is contained in a geometric progression of length at most
2|X |+ 1 or it is the union of two geometric progressions with same ratio.
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Small doubling problems

By now, Freiman's theory had been extended tremendously, in many

di�erent directions.

It was shown by Freiman and others that problems in various �elds may

be looked at and treated as Structure Theory problems, including

Additive and Combinatorial Number Theory, Group Theory, Integer

Programming and Coding Theory.

J. Cilleuelo, M. Silva, C. Vinuesa, H. Halberstam, N. Gill, B.J.

Green, Helfgott, R. Jin, V.F. Lev, P. Y. Smeliansky , I.Z. Ruzsa, T.

Sanders, T.C. Tao, ...

Small doubling problems have been studied in abelian groups by many

authors:

Y. O. Hamidoune, B. Green, M. Kneser, A.S. Lladó, A. Plagne,

P.P. Palfy, I.Z. Ruzsa, O. Serra, Y.V. Stanchescu, . . .
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Thank you for the attention !
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