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Regularity conditions for languages

Conditions that guarantee that a language is accepted by a

finite automaton

[A. de Luca, S. Varricchio, 1999, EATCS]

”Finiteness and Regularity in Semigroups and Formal
Languages”
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A. de Luca, S. Varricchio, 1999, EATCS

BURNSIDE PROBLEM FOR SEMIGROUPS

Study of the conditions that guarantee that a finitely

generated and periodic semigroup is finite

FINITENESS CONDITIONS VS LANGUAGES

Via the syntactic semigroup of L, a finiteness condition is a

regularity condition for L
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Brzozowski Conjecture, 1969

For n, k ≥ 1, B(k, n, n+ 1) is the free semigroup over k

generators in the variety xn = xn+1

ϕ : A∗ −→ B(k, n, n+ 1)

s ∈ B(k, n, n+ 1) =⇒ ϕ−1(s) ∈ Rat(A∗)

[A. de Luca, S. Varricchio, 1990]

Positive solution for n ≥ 5

The Word problem is recursively decidable for n ≥ 5
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The Permutation property for semigroups

[A. Restivo, Ch. Reutenauer, 1984]

S finitely generated and periodic semigroup. Then S is finite

if and only if S is permutable

[M. Curzio, P. Longobardi, M. Maj, D. Robinson, 1983, 1985]

Characterization of permutable groups
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A proof of Restivo and Reutenauer result

[Ch. 3, Prop. 3.4.1]

Let S be a finitely generated and permutable semigroup

The set of the canonical representatives of S is a

bounded language
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Bounded languages

Definition
Let L ⊆ A∗. L is called n-bounded if there exist n words
u1, u2, . . . , un such that

L ⊆ u∗1u
∗
2 · · ·u∗n

L ⊆ {uk11 u
k2
2 · · ·u

kn
n : k1, . . . , kn ∈ N}

L is called bounded if it is n-bounded for some n
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A characterization of bounded languages

[ Ch. 2, Theorem 2.5.1, A. Restivo, Ch. Reutenauer, 1983]

L is bounded if and only if there exists some n ≥ 1 such that

the set of factors of L does not contain n-divided words
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Bounded languages

in

the theory of context-free languages
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Main result

Every bounded context-free language L1 is commutatively

equivalent to a regular language L2
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Commutative Equivalence

Let L1, L2 ⊆ A∗

L1 is commutatively equivalent to L2 if there exists a bijection

f : L1 −→ L2

such that, for every u ∈ L1,

ψ(u) = ψ(f(u))
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The Parikh morphism

I A = {a1, . . . , at}

I ψ : A∗ −→ Nt

I ∀u ∈ A∗, ψ(u) = (|u|a1 , |u|a2 , . . . , |u|at)
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Schützenberger Conjecture

(Schützenberger, 1956)

Every finite maximal (unique factorization, variable-length) code is

commutatively equivalent to a prefix code
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I Bounded and sparse context-free languages

I Our problem and its relations with the theory of formal
languages
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Sparse languages

L ⊆ A∗

The counting function of L is the map

cL : N −→ N

such that

cL(n) = Card(L ∩An)
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Sparse and bounded languages

Definition

L is sparse or poly-slender if cL(n) is upper bounded by a

polynomial in n
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Sparse and bounded languages

Theorem (Latteux and Thierrin 1984; Ibarra and Ravikumar
1986; Raz 1997; Ilie, Rozenberg and Salomaa 2000)

A context-free language is sparse if and only if it is bounded
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Sparse and bounded languages

Theorem (D., Intrigila, and Varricchio 2006)

Let L be a bounded context-free language over the alphabet A

Then there exists a regular language L′ over an alphabet B such

that, for all n ≥ 0,

cL(n) = cL′(n)
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The Problem

Given a bounded context-free language L, does it exist a regular

language L′ which is commutatively equivalent to L?

Do there exist a regular language L′ over the same alphabet of L

and a bijection
f : L −→ L′

such that, for every u ∈ L, u and f(u) have the same Parikh

vector ?
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I L commutatively equivalent to L′ implies

∀ n ∈ N, cL(n) = cL′(n)

F. D’Alessandro 21/40



Main result

Theorem (D., Intrigila, 2014)

Every bounded context-free language is commutatively equivalent

to a regular language. Moreover such construction is effective

More generally, we prove that:

Theorem

Every bounded semi-linear language is commutatively equivalent

to a regular language. Moreover such construction is effective
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Example
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L ⊆ a∗ba∗

L = {a1+x1+2x2bax2 : x1, x2 ≥ 0}

L′ = {a1+x1ba3x2 : x1, x2 ≥ 0}

a1+x1+2x2bax2
f−→ a1+x1ba3x2

F. D’Alessandro 24/40



L ⊆ a∗ba∗

L = {a1+x1+2x2bax2 : x1, x2 ≥ 0}

L′ = {a1+x1ba3x2 : x1, x2 ≥ 0}

a1+x1+2x2bax2
f−→ a1+x1ba3x2

F. D’Alessandro 24/40



L ⊆ a∗ba∗

L = {a1+x1+2x2bax2 : x1, x2 ≥ 0}

L′ = {a1+x1ba3x2 : x1, x2 ≥ 0}

a1+x1+2x2bax2
f−→ a1+x1ba3x2

F. D’Alessandro 24/40



A geometrical perspective

axbay −→ (x, y) ∈ N2

Then the language

L = {a1+x1+2x2bax2 : x1, x2 ≥ 0}
becomes

{(1 + x1 + 2x2, x2) : x1, x2 ≥ 0}
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A geometrical perspective

axbay −→ (x, y) ∈ N2

and the language

L′ = {a1+x1ba3x2 : x1, x2 ≥ 0}
becomes

{(1 + x1, 3x2)} : x1, x2 ≥ 0}
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L ⊆ a∗ba∗

L = L1 ∪ L2 ∪ L3

1. L1 = a1+x1+2x2bax2

2. L2 = a2y1+y2bay1+2y2

3. L3 = az1ba1+z2+2z1
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1. L1 = a1+x1+2x2bax2 −→ L′1 = a1+x1ba3x2

2. L2 = a2y1+y2bay1+2y2 −→ L′2 = a3y1ba3y2

3. L3 = az1ba1+z2+2z1 −→ L′3 = a3z1baz2+1

Obstruction : a3ba3 ∈ L′1 ∩ L′2 ∩ L′3
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A regular language equivalent to
L = L1 ∪ L2 ∪ L3

(3x1 + 1, 3x2) ∪
(3x1 + 1, 3x2 + 1) ∪
(3x1 + 1, 3x2 + 2) ∪
(3y1, 3y2) ∪
(3z1, 3z2 + 1) ∪
(3z1, 3z2 + 2) ∪
(3z1 + 2, 3z2 + 1) .
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Some elements of the solution
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Ambiguities of context-free languages

1. L ⊆ u∗1u
∗
2 · · ·u∗k context-free bounded

2. Ambiguity of L as a context-free language

3. Ambiguity of L as a subset of the product

u∗1 · · ·u∗k
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Techniques

1. Faithful linear representation of bounded languages:
Ginsburg and Spanier, 1966; Eilenberg Cross-section, 1974

2. Elementary number theory (on semi-linear sets):
Eilenberg and Schützenberger result on semi-simple sets, 1969

3. Geometrical decomposition of semi-linear sets

4. Combinatorics of variable-length codes
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Open problems
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Gap Theorem

Theorem (Incitti 1999, Bridson and Gillman 1999)

A context-free language is either sparse or of exponential growth

Theorem (Grigorchuk, Mach́ı, 1998)

Existence of languages of intermediate growth

L = {an1ban2b · · · ank−1bank : n1 ≤ n2 ≤ · · · ≤ nk, k ≥ 1}
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Languages of exponential growth

there exist languages of exponential growth that are not

commutatively equivalent to regular languages

Search of conditions for and characterizations of languages of

exponential growth commutatively equivalent to regular ones.

[D., Carpi, 2018, 2019]

Finite-index context-free languages

Minimal linear grammars

Minimal linear grammars and the commutative equivalence

problem
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Thank you
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