

Minimal linear grammars and codes

Arturo Carpi

Dipartimento di Matematica e Informatica
Università di Perugia

Giornate di Informatica Teorica
in ricordo di Aldo de Luca

Rome, July 11–12, 2019

Encoding and decoding

Encoding requires an injective map $f: B^* \rightarrow A^*$, where B and A are, respectively, the **source alphabet** and the **code alphabet**.

A morphism $f: A^* \rightarrow B^*$ is injective if and only if

- f is injective on letters,
- $f(A)$ is a variable length code.

Minimal linear grammars

Definition

A linear grammar is **minimal** if it has a unique non-terminal.

Example

Let G be the minimal linear grammar with the productions

$$\begin{aligned}p_a : \quad & X \rightarrow aXb, \\p_b : \quad & X \rightarrow bXa, \\p_T : \quad & X \rightarrow \epsilon.\end{aligned}$$

G generates the language of **binary antipalindromes**.

Unambiguous minimal linear grammars

Let $G = (V, T, P, X)$ be a minimal linear grammar with a unique terminating production p_T , A an alphabet, and $f: A \rightarrow P \setminus \{p_T\}$ a bijection.

Let $c_f: A^* \rightarrow L(G)$ be the function mapping any word $w = a_1 \cdots a_n$, ($a_1, \dots, a_n \in A$) to the word generated in G by the sequence of productions $f(a_1), \dots, f(a_n), p_T$.

Proposition

The map c_f is a bijection if and only if G is unambiguous.

Thus, one may encode by means of **unambiguous minimal linear grammars** (in the sequel, briefly, **UMLG**)

Our goal

Study of some classical problem of Theory of Codes in the more general framework of UMLG.

Remark

In the sequel, all grammars have a unique terminating production, denoted p_T .

Remark

Let G be a minimal right-linear grammar with productions

$$X \rightarrow y_1 X, \quad \dots, \quad X \rightarrow y_n X, \quad X \rightarrow z.$$

The grammar G is unambiguous if and only if $Y = \{y_1, \dots, y_n\}$ is a code.

Proposition (Greibach)

Ambiguity of minimal linear grammars is undecidable.

(no Sardinas-Patterson algorithm for UMLG)

Bernoulli distributions

Definition

A Bernoulli distribution on the alphabet T is a map $\pi: T \rightarrow \mathbb{R}_+$ such that $\sum_{a \in T} \pi(a) = 1$.

For any word $w = a_1 \cdots a_n$ ($a_1, \dots, a_n \in T$), we set

$$\pi(w) = \pi(a_1) \cdots \pi(a_n)$$

and for any subset R of T^* ,

$$\pi(R) = \sum_{w \in R} \pi(w).$$

Definition

A subset L of T^* is **dense** if for all $w \in T^*$ one has $T^* w T^* \cap L \neq \emptyset$.

Proposition (Schützenberger)

Let X be a regular code on the alphabet T and π a positive Bernoulli distribution on the alphabet T . The following propositions are equivalent:

- X is a maximal code,
- X^* is dense,
- $\pi(X) = 1$.

Bernoulli distributions and UMLG

Definition

Let G be a minimal linear grammar with productions

$$X \rightarrow u_1 X v_1, \quad \dots, \quad X \rightarrow u_n X v_n, \quad X \rightarrow w_T.$$

We set $\pi(G) = \sum_{i=1}^n \pi(u_i v_i)$.

Remark

$\pi(G) = \pi(L_1)/\pi(w_T)$, where $L_1 = \{w \mid X \Rightarrow^2 w\}$.

Proposition

Let G be an UMLG. For all Bernoulli distribution π on the terminal alphabet, one has $\pi(G) \leq 1$. Moreover,

$$\pi(L(G)) = \frac{\pi(w_T)}{1 - \pi(G)}.$$

Definition

An UMLG G is **maximal** if there does not exist another UMLG on the same terminal alphabet whose set of non-terminating productions properly contains the one of G .

Definition

A subset L of T^* is *very dense* (in T^*) if there exists a finite set $F \subseteq T^*$ such that, for all w in T^* , $FwF \cap L \neq \emptyset$.

Proposition

Let G be an UMLG. If $L(G)$ is very dense, then $\pi(G) = 1$ for all Bernoulli distribution π on the terminal alphabet.

Proposition

Let G be an UMLG. If one has $\pi(G) = 1$ for some positive Bernoulli distribution π on the terminal alphabet, then G is maximal.

Proposition

Let G be a maximal UMLG. Then $L(G)$ is dense.

Example

Binary antipalindromes are generated by the UMLG with productions

$$X \rightarrow aXb, \quad X \rightarrow bXa, \quad X \rightarrow \epsilon.$$

The language is dense, but the UMLG is not maximal. Moreover,

$$\pi(G) = 2\pi(a)(1 - \pi(a)) \leq 1/2,$$

for all Bernoulli distribution.

Example

Let G be the grammar with the productions

$$X \rightarrow uXv, \quad u \in P, v \in S, \quad X \rightarrow \epsilon,$$

where P and S are, respectively, a maximal prefix code and a maximal suffix code on the terminal alphabet.

- G is unambiguous,
- $\pi(G) = 1$ for all Bernoulli distribution π ,
- G is maximal,
- $L(G)$ is dense,
- In general, G is not very dense
(e.g., taking $P = \{a, ba, bb\}$, $S = \{a, ab, bb\}$).

Problem

Does there exist a maximal UMLG G such that $\pi(G) < 1$ for some positive Bernoulli distribution π ?

Definition

An UMLG is **proportional** if there exists a rational number q such that for all non-terminating production $X \rightarrow uXv$ one has $|v| = q|u|$.

Proposition

Let G be a proportional UMLG and π be the uniform Bernoulli distribution. The following conditions are equivalent:

- G is a maximal UMLG,
- G is a maximal proportional UMLG,
- $\pi(G) = 1$.

A transmitter computes an injective **encoding function**

$h: A^* \rightarrow T^*$ on **messages** $w \in A^*$ generated by a **source** with probability p_w .

Any letter $a \in T$ has a **transmission cost** $c(a) \in \mathbb{R}_+$.

The map c is extended to a morphism of T^* into the additive semigroup \mathbb{R}_+ .

The average cost per letter of the transmission is given by

$$C = \lim_{n \rightarrow \infty} \sum_{w \in A^n} p_w c(h(w)),$$

provide the limit exists.

In the simplest case, $p_w = \pi(w)$ for some Bernoulli distribution π .

Optimality - 2

If h is a monomorphism, then $Y = h(A)$ is a code and

$$C = \sum_{y \in Y} p_y c(y), \quad \text{where } p_y = \pi(h^{-1}(y))$$

If, moreover, all letters have the same cost (say 1), then

$$C = \sum_{y \in Y} p_y |y|.$$

If h is obtained from an UMLG G with productions

$$X \rightarrow u_1 X v_1, \quad \dots, \quad X \rightarrow u_n X v_n, \quad X \rightarrow w_T,$$

then

$$C = \sum_{i=1}^n p_i c(u_i v_i), \quad \text{where } p_i = \pi(h^{-1}(u_i w_T v_i))$$

If all letters have the same cost (say 1), then $C = \sum_{y \in Y} p_y |y|$.

Proposition

Let G be an UMLG with productions

$$X \rightarrow u_1 X v_1, \quad \dots, \quad X \rightarrow u_n X v_n, \quad X \rightarrow w_T.$$

There exists a prefix code $Y = \{y_1, \dots, y_n\}$ such that
 $|y_i| = |u_i v_i|$, $i = 1, \dots, n$.

Proof.

By inequality $\pi(G) \leq 1$ and Kraft-McMillan Theorem. □

Thus, in the case of constant letter cost, coding by UMLG cannot accelerate the transmission rate obtained by optimal prefix codes.

Definition

Two productions $X \rightarrow \alpha$ and $X \rightarrow \beta$ are **commutatively equivalent** if β is a permutation of α . Two grammars $G_1 = (V, T, P_1, X)$ and $G_2 = (V, T, P_2, X)$ are **commutatively equivalent** if there is a bijection $f : P_1 \rightarrow P_2$ such that, for all $p \in P_1$, p and $f(p)$ are commutatively equivalent.

Extending an argument of Carter and Gill, one has:

Proposition

The following conjectures are equivalent:

- every UMLG is commutatively equivalent to an unambiguous regular grammar,
- every UMLG can be replaced by a code with the same average cost per letter for every assignment of symbol costs and every probability distribution on source symbols.

Example

Let G be the UMLG with productions

$$X \rightarrow a^5X \mid bX \mid abX \mid ba^2X \mid \epsilon.$$

Since $\{a^5, b, ab, ba^2\}$ is an uncompletable code, the productions of G cannot occur in a regular maximal UMLG.

Problem

Is it possible to obtain a (non-regular) maximal UMLG adding productions to G ?

More generally, does there exist ‘uncompletable’ UMLG ?

Thank you